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ABSTRACT 

It was recent ly  shown t ha t  there  exis ts  a fami ly  of Z 2 Markov r a n d o m  

fields which are K bu t  are not  i somorphic  to Bernoull i  sh i f t s  [4]. In th is  

paper  we show t ha t  mos t  d is t inc t  m e m b e r s  of  th is  fami ly  are not  isomor-  

phic. T h i s  impl ies  t ha t  the re  is a two p a r a m e t e r  fami ly  of Z 2 Markov  

r a n d o m  fields of  t he  s a m e  entropy,  no two of  which are i somorphic .  

1. I n t r o d u c t i o n  

Markov chains are some of the most studied and best understood objects in 

both probability theory and dynamical systems. Friedman and Ornstein proved 

that  finite state space, mixing Markov chains are isomorphic to Bernoulli shifts 

[2]. This can be extended to show that  any Markov chain is isomorphic to a 

permutation of a finite set, a Bernoulli shift, or the direct product of these [8]. 

Mixing Markov shifts satisfy the central limit theorem and have an exponential 

rate of convergence to their invariant measure. 

The theory for Z 2 Markov random fields is much more complicated from both 

the perspective of probability theory as well as dynamical systems. For example, 

Ledrappier created a simple Z 2 Markov random field which is mixing, but is 

not 3-mixing, and has zero entropy [5]. Whether there exist actions of Z which 

are mixing but not 3-mixing is a long standing open question in ergodic theory 

[3]. Many other people have expanded upon Ledrappier's example to create a 

wide variety of zero entropy mixing Z 2 Markov random fields. Even if a Z ~ 
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Markov random field has completely positive entropy (also called K)  it need 

not be isomorphic to a Bernoulli shift [4]. 

In this paper we give another example of the differences between the ergodic 

theoretical properties of Markov random fields and those of Markov chains. We 

will examine the class of Markov random fields studied in [4]. We will show that  

in this class most distinct members are not isomorphic. Specifically we show 

that  there exists an uncountable family of Markov random fields with the same 

entropy in which no two distinct members are isomorphic. 

2. C o n s t r u c t i o n  

First we give a heuristic description of a discrete time exclusion process on the 

integers which was introduced by Yaguchi [9]. For a rigorous description of 

this process see [9]. Arrange the integers in a vertical line, and on each integer 

place a container which can hold at most one particle. At any time the state 

of our system is given by x C X = {0, 1} z, where xi = 1 implies that  there is a 

particle in the i th container. We first describe the transition probabilities and 

then describe the stationary measures on X. After one unit of time each of our 

particles will either stay in the same container or move down one (to a lower 

numbered) container. To describe the movement of our particles we choose a, 

0 < a _< 1/2. The process evolves in the following way. During each interval of 

time, every particle decides independently with probability a if it wants to move 

down one space. It also checks if the container below it is vacant. If both the 

particle decides to move, and the container below is empty, then the particle 

moves down one container. Otherwise it stays in the same container. (Note 

that  a particle cannot move into the container below if the container below is 

occupied and the particle moves out of that  container.) 

The stationary measures on {0, 1} z for this process were classified by Yaguchi. 

They include a family of point masses. Define Xm(i) = 0 for all i > m and 

x,~(i) = 1 for all i _< m. Then for each m the point mass at x,~ is stationary. 

To describe the other stationary measures we define p to be the value between 

0 and 1 which specifies the density of containers that  have a particle. Yaguchi 

proved that  for each a and p there is a unique stationary measure on X [9]. 

Define 7 = ( l /p)  - 1 and 

+ 1 - X/(7 + 1) 2 - 47a  
9=  
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THEOREM 2.1 ([9]): The nontrivial stationary measures of the exclusion pro- 
cess are the Markovian measures #a,p given by the transition probabilities 

P(O,O)- -1- /3 /a ,  P ( 1 , 0 ) - - / 3 7 / a ,  P(O, 1)=/3/a,  P ( 1 , 1 ) = l - / 3 7 / a  

where P(p, q) = ~ t ( x i +  1 -~ qlxi = p). 

To convert this exclusion process into a two dimensional space-time process 

we use the space ~ = (0, 1) z~. S and T are the shifts down and to the left. Tha t  

is (S(02))i,j = (02)i,j+a and (T(w))i,j = (w)i+l,j. Applying T corresponds with 

t ime increasing by one unit. The measure # = #~,p on ~ has measure # = #~,p 

on vertical cylinder sets and is determined on other cylinder sets by #a,p and 

the transition probabilities of the exclusion process. 

THEOREM 2.2 ([4]): For any p E (0, 1) and c~ E (0, .5) the exclusion process is 
isomorphic to a Bernoulli shift. 

Proof'. This follows easily from calculations in [9]. | 

Now we describe how to alter the exclusion processes to form the class of 

transformations that  we will s tudy in this paper.  First we choose a value c 

between 0 and 1. Then we assign to each particle the color red with probabili ty 

c and blue with probabili ty 1 - c .  This is done independently for each particle. 

The color of a particle does not change through time. 

To do this coloring formally we use the exclusion process as a base for a skew 

product  with the one dimensional (c, 1 - c) Bernoulli shift. We have already 

defined fl = {0,1} z2. Now define Y = {red, blue} z. Define a: Y -~ Y by 

(a(y))i = yi+l. Now the process we are interested in, (S, T, ft • Y, rn), is defined 

as follows: 

(S(w) ,a(y))  ifwo,o = 1, 
S(w,y)  = (S(w),y) if wo,o = O; 

T(w, y) = { (T(w),(T(02)' Y)a(Y)) else;if 020,0 = 1 and o21, 0 ---- 0 ,  

S and T are the shifts down and to the left and a is the left shift on Y. The 

measure m = g x u, where the measure u on Y is (c, 1 - c) product  measure. 

Occasionally we will work with the measure N = f ix  u x u on the space f tx  Y x Y. 

This is the invariant measure for a colored exclusion process where the particles 

may have four colors. 

We will work with the three set partit ion, P ,  which takes on values 0, red, 

and blue. This parti t ion tells us whether there is a ball in container 0 at t ime 
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0 and, if so, what color it is. It  is easy to check that  these colored exclusion 

processes are Markov random fields. The main result from [4] tells us tha t  all 

of these systems are Markov random fields which are K but not isomorphic to 

Bernoulli shifts. 

THEOREM 2.3 ([4]): For any choice o f a  �9 (0, .5) ,p �9 (0,1), and c �9 (0,1) 

the resulting transformation is a Markov random field which is K but is not 

isomorphic to a Bernoulli shift. 

There is one factor of the colored exclusion process tha t  will play a large role 

in the proof. Tha t  is the factor generated by the factor map F(w, y) = a;. We 

refer to this as the e x c l u s i o n  p r o c e s s  f ac to r .  This factor is isomorphic to a 

Bernoulli shift by Theorem 2.2. 

The main result of this paper  is that  almost any two choices of a,  p, and c 

result in t ransformations which are not isomorphic. We will s tate the theorem 

precisely in the next section after we have introduced some more notation. 

3. M a i n  T h e o r e m  

In this section we state our main results. In the construction of the family of 

colored exclusion processes there are three degrees of freedom. They are a ,  the 

propensity to move downward, p, the density of particles, and c, the percentage 

of particles colored blue. During the proof, however, it will be advantageous to 

use a different set of three parameters .  We call these parameters  the entropy of 

the colored exclusion process (as a Z 2 action), the average speed of a particle, 

and the entropy of the colored exclusion process relative to the exclusion process 

under the action of S. The formula for the entropy of the colored exclusion 

process is 

1 - X/1 - 4a(p  - p2) h(a) ,  
H(a,p ,c )  = h(a)#c~,p(Xo = 0, xl = 1) = 2a 

where we are using the notat ion h(c) = - (c log(c )  + (1 - c)log(1 - c)). The 

entropy does not depend on c because the colored exclusion process is a relative 

zero entropy extension of the exclusion process. 

The  average speed of a particle is given by the formula 

s(a, p, c) = ap~,p(Xo = O, xl = 1)/p = 1 - ~/1 - 4a(p  - p2) 
2p 

(We will explain where this formula comes from in the next section.) The 

relative entropy is given by the formula 

p, c) = ph(c) .  
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The main result of this paper is to show that  for most triples (a, p, c) and 

( a ' , p ' , d )  the colored exclusion processes generated by these triples are not 

isomorphic. If the two colored exclusion processes are isomorphic then they 

must have the same entropy (i.e., H ( a ,  p, c) = H(a ' ,  p', c')). Most of this paper 

is building up to the proof of Lemma 5.1. From this it will be easy to show 

that  if the two colored exclusion processes are isomorphic then they have the 

same speed (i.e., s(a,  p, c) = s(a' ,  p', d)) .  With more work we will show that  

Lemma 5.1 implies that  if the two colored exclusion processes are isomorphic 

then r (a ,  p, c) = r(a' ,  p', c'). These results combine to form our main theorem. 

THEOREM 3.1 : I f  the colored exclusion process given by (a, p, c) is isomor- 

phic to the colored exclusion process given by (a' ,p' ,  c') then H(a ,p , c )  = 

H ( a ' ,  p', c'), s(a,  p, c) = s(a ' ,  p', c'), and r (a ,  p, c) = r (a ' ,  p', c'). 

By looking at the partial derivatives of the function from a and p to H and s 

it is not difficult to see that  it is at most two to one. In the region where a and 

p are less than one half it is one to one. This gives us the following corollary. 

COROLLARY 3.1: f f  0 ~ a, a, p, p', c, c' _< .5 then the colored exclusion process 

generated by (a, p, c) is isomorphic to the colored exclusion process generated 

by ( a ', p', d ) i f  and only i ra  = a ', p = p' and c = d.  

Proof: By checking the partial derivatives it is easy to see that  the map from 

a and p to H and s is one to one in this region. (In the interior of this region 

Ha > 0, Hp > 0, sa > 0 and sp < 0 which justifies the claim.) Thus the 

previous theorem implies that  ct = a ' ,  and p = p'. As h(c) is increasing in this 

region the fact that  p = p' implies c = c'. | 

COROLLARY 3.2: There eMsts a two parameter family of Z 2 Markov random 

fields which are all K and have the same entropy but no two are isomorphic. 

4. N o t a t i o n  

In this section we present much of the notation used in the proof. For the rest 

of the paper we fix (a, p, c) and (cd, p', c') and assume that  �9 is an isomorphism 

between the colored exclusion processes generated by (a, p, c) and (a', p', c'). 

We have already defined the exclusion process factor by the projection map 

F(w, y) = c~. We will consider the other projection map C(•, y) = y. We use 

this projection to define ff~* (aJ, y) = C(q~(w, y)). 
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Given co E f~ we number the particles. Let I~ = {j: coo,j = 1} be the set of 

containers which have particles at time 0. For any k > 0 define cok to be the 

smallest j _> 0 such that  II~ M [0,j]l = k + 1. For k < 0 let cok be the largest 

j _< - 1  such that  II~ M [j,-111 = - k .  Particle i is defined to be the particle 

in container coi. For i _> 0 this is the i + 1st particle you see when you start  

at container 0 and then move upward. Let w i't be the number of the container 

that  particle i is in at time t. To be more precise set coi,0 = w i. Given coi,t we 

set w ~,t+l = co~,t _ 1 if cot+l,w~,t • 0 and coi,t+l = co~,t otherwise. 

At various times during the proof we will use properties of a f ree  r a n g e  

p rocess .  This process is closely related to the exclusion process. This process 

acts on the space R = {N} z2. Define the set f~l = {co E (0, 1) z2 : co0,0 = 1}. 

Define a map f :  ftl -~ R by (f(w))~,t  = w i+l't - co~,t. We put a measure n on 

R by n ( A )  = #({co: co E f~l, f(co) E A}. The shift operator a acts on R by 

6r(X)i,j = Z i+ l , j .  

THEOREM 4.1: The process (R, a, n) is isomorphic to an infinite entropy 

Bernoulli  shift. 

Proof'. This follows easily from arguments in [4]. I 

We will only use that  the free range process is ergodic in this paper. 

By the average speed of particle 0 in co we mean s = - limt~oc co~ By the 

ergodicity of the free range process this limit is the same for almost every co. 

The connection between the exclusion process and the free range process tells 

us that  the average speed is also 

#({w: COo,0 = 1 and Wl,o = 0}), 

which agrees with the formula in the previous section. 

During the course of the proof we will use the d and f metrics often. The d 

and ] metrics are defined as follows. For any m, n, and w, w' E {red,blue} z let 

~t t rw'w'~ = { j :  w ( j )  r w ' ( j ) , m  <_ j <_ n}  
n - m + l  

For any m, n, and w, w' E {red,blue} z let 

- -  ! 

/E,~,n](W,W ) = 1 
n - m + 1 '  

where k is the maximal integer for which there are subsequences of integers, 

m < il < i2 < "'" < ik <__ n and m _< j l  < j2 < " "  < Jk <_ n such that  w(ir)  = 
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w'(jr), 1 < r < k. An e J~0,nl neighborhood ofw is the set {w': rio,hi(w, w') < e}. 

Simple combinatorics show that  for any c, 0 < c < 1, there is a sufficiently small 

e such that  for all w the c, 1 - c product measure of the e fn neighborhood of 

w is decreasing exponentially in n. 

Our proof will be based on studying finite code approximations to isomor- 

phisms. Since �9 is measurable we can choose an n large enough so that  there 

exists @n which is an e good finite approximation of O. That  means On is a 

function On: f~ x Y -+ P such that  

1. m({(co, y): @n(w,y) r @(w,y)0,0}) < e and 

2. @n(w,y) = On(CO',y') if (w,y)i,j = (w',y')i,j for all i , j ,  such that  

- n < i , j < n .  

Now we describe the main way in which we use the finite codes. (The sequence 

On(SJ(w,y)) approximates the sequence O(w,y)o,j.) We would like to find a 

sequence that  approximates @*(w, y)j. The sequence @(co, Y)o,j has @*(co, y)j 

as a subsequenee. The only symbols in @(w, Y)0,j but not O*(co, y)y are all 0. 

The procedure defined below lets us extract the subsequence O* (w, y)j from the 

sequence O(w, Y)o,j. Now we define how we r e m o v e  t h e  zeros from a sequence 

aj �9 {0, red, blue} z to get a sequence 5j �9 {red, blue} z. Let 

I = {jlaj �9 {red, blue}}. 

For k _> 0 define ek to be the smallest j such that  II N [0,j]l -- k + 1. For k < 0 

define ek to be the largest j such that  II n [j ,-1]l = - k .  The sequence we get 

by removing the zeros from aj is gj = aej. 

The reason we made this definition is the following lemma. It tells us that  

if two sequences are close in d then when we remove the zeroes we get two 

sequences that  are close in f .  

LEMMA 4.1: I fa,  b �9 {0, red, blue} N, l i m j _ ~  # { j  �9 [0, J] : aj 7 ~ 0 } / ( J +  1 ) =  

p, and limj,_+~ # { j  �9 [0, J']: aj r b j } / ( J ' +  1) < e, then l i m k - ~  j~0,kl(~, b) < 

Proof: L e t I a  = {j :a j  E {red, blue}}. Let /b = {j :bj  E {red, blue}}. Let 

I = {j  : aj = by E {red, blue}}. I is a subset of both Ia and Ib and has density 

at least p - e. Thus there is a subsequence of density greater than (p - c)/p in 

5 that  is the same as a subsequence in b. Thus limk-~oc J~o,k] (~, b) < ~/P. | 

The main idea of the proof is that  F(@(w, y)) is determined largely by w and 

is largely independent of y. We will make this idea precise in Lemma 5.1. Before 

we can do that  we need the following definitions. Let O~(c,J, y) be the sequence 
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obtained by removing the zeros from the sequence On(S j (w, y)). The sequence 

On(W , y) approximates O*(w, y). At each time t we also construct the sequence 

(which is indexed by j) ~n(TtS j+(F(r176 (w~ y)). Define ~'tn(W , y) to be the 

sequence obtained by eliminating the zeros from the previous sequence. For 

each t the sequence ~tn(w , y) approximates O*(w, y). 

For each time t we construct the sequence On(TtS j+w~ (w, y)). We eliminate 

the zeros from this sequence to get the new sequence n [ , Y)' Notice that  the 

two sequences ~t(w,  y) and O*'t(w, y) are translates of each other. We now use 

this fact to make one more definition. This will play a crucial role in Section 5. 

Define dtn= dt((w, y), On) so that  

r y) = ~-d~, (O;/(W, y)). 

5. T h e  m a i n  l e m m a  

Remember we have fixed (a, p, c) and (a',  p', c'). We have assumed �9 is an 

isomorphism between the colored exclusion processes generated by (a, p, c) and 

(a ~, p', d).  We have On a sequence of finite approximations which converge to 

0. We also have that  0n(W, y) and ~'tn(W,y ) are sequences that  approximate 
0* t~w ~ . t 

0* (w, y) and n' [ , Y) is a sequence that  approximates a dr, (0* (w, y)). Our goal 

in this section is to prove the following lemma. 

LEMMA 5.1: There exists a On, N, and an e > 0 such that for all T 

m({(w,y): #{ t  �9 [0, T] such that Idtn(W,y)l < N} < e ( T +  1)}) _ 1 - r 

An outline of the proof is as follows. Given y and y' pick z so that  zi = Yi 

for all i _> 0 and zi = y~ for all i < 0. We will first show that  

~im ft0,kl (O* (w, y), O* (w, z)) = 0 

Then we will show in Lemmas 5.5 and 5.6 that  no matter how big t becomes 

usually stays bounded. We will combine this with coding arguments and the 

assumption that  Lemma 5.1 is false to conclude that  

lim inf - * k-+~ f[-k,k](0 (w,y),0*(W,Z)) ---- 0. 

Similar arguments show that  

lim inf ~_~ ~1 (O* (w, y'), O* (w, z)) = 0 
k - +  r ~ ' �9 
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We show that  the lim infs can be achieved on a subsequence of density near 1. 

Thus if Lemma 5.1 is false then 

lim inf f[-t~,k] (r (w, Y), ~5*(w, y')) = 0. 
k-+oo 

This statement is Lemma 5.7 and forms the heart of the proof of Lemma 5.1�9 

Then we complete the proof of Lemma 5.1 by using a variant of Lemma 5.7 and 

Theorem 2.2 to generate a contradiction. 

LEMMA 5.2: For any e > 0 there exists ~n SUCh that for almost every (w, y) 

h m  /[0 k]((I)~(w,Y), (I) (w,y)) < e. 

Proof'. Let Cn be a finite approximation of �9 which is p'e good. We apply 

the finite code ~n to the sequence of points SJ(w,y) for all j > 0. The colored 

exclusion process is totally ergodic, so by the ergodic theorem for almost every 

(w, y) the density of j such that  ~n(SJ(w, y)) r ~(w, y)o,j is less than or equal 

to p'e. The ergodic theorem also tells us that  for almost every (w, y) the density 

of particles in O(w, y) is J .  By Lemma 4.1, when we remove the zeros we get 

that  

lim - * * k_+oof[O,k](~?n(OJ,y),(~ (oJ, y)) < 6.. | 

LEMMA 5.3: For almost every pair (w,y) and (w,z) such that zi = Yi for all 
i > 0  

l i m  Y), z)) = 0. 

Proo~ Since zi = Yi for a l l i  > 0 we have that  ~n(W,y)j  = ~n(W,z)j for all 

j > 2n. Thus Lemma 5.2 implies that  limk-+oo ~O,kI(O2*(w,y),~*(W,Z)) <_ 2e. 
As e is arbitrary the proof is complete. | 

Define 

(1) 
B 1 ----B 1 ((co, y),  Oro, (~, n )  

- d t  
={t: there exists J > Jo such that  ,f[o,a](a n (r y), r y))) > e}, 

B2 =B2 ((w, y), Jo, e, n) 

={t: there exists g > Jo such that  f[o,g]((~n(W,y),r > e}, 

and 

Ba Jo, r n) 

={t: there exists J > Jo such that  - * fE_,01(r y), y)) > d" 
Then set B -- B1 U B2 U B3. 
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LEMMA 5.4: For any e, e0 > 0 there exists ~2 n and Jo so that for all T 

m{(w, y): # { B  M [0, T]} < e(T + 1)} > 1 - co. 

Proof: For the moment let J0 be a fixed number. For each k and t such 

that Sk(w) e f~l and t E B2(S k (w, y), Jo, e) there exists a corresponding j and 

J > J0 such that 

(2) 

The correspondence between k, t and j, t is one to one. By the ergodic theorem 

and Lemma 5.2, the density of j E Z and 0 < t < T such that equation (2) 

is not satisfied can be made less than any e' > 0 by Lemma 5.2 if J0 is large 

enough. By the ergodic theorem 

f # {B  M [0, T]} 

is the density of k E Z and 0 < t < T such that sk(w) E f~l and equation (1) is 

not true. By the correspondence above this density is bounded by e'/p'. Thus 

by Fubini's theorem we have that for all T 

#{B2 [O,T]}dm <_ M E'/p'. 

Similar arguments work for B1 and B3. Thus 

#{B  Cl [O,T]}dm e'/p'. <_ 

As e is arbitrary the right hand side can be made arbitrarily small by making 

Jo large. Thus the lemma is true. I 

Our next goal is to show that if Lemma 5.1 is false then 

lim inf ~ -k  01 (r (w, y), ~* (w, z)) = 0. 
k ----~ o o  L , J 

The basic idea is that  if dtn = - N  then ~*'t(C~n ~. , y)i for 0 < i < N approximates 

O*(w,y)i for - N  < i < 0. The first step is to show that by comparing the 

sequences On't(w, y) and q~(w, y) we can determine the value of dtn fairly well 

no matter  how big t becomes. Moreover, we will show that if Yi = zi for all 

i _> 0 then I dtn (w, y) -dtn (w, z) ] is bounded on a set of t of high density. This will 

be enough to be able to use coding arguments to draw the desired conclusion. 
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Given e > 0 define Cj  o C Y by 

Cj  o = {y: there exists a J > Jo such that f[o,j](aYy,y) < e}. 

Because the ~' measure of an e ][o,k] neighborhood decreases exponentially in k 

for any sufficiently large Jo we have 

(3) ~'(CJo) < ~. 

Consider the set 

L L( t ,e , (w,y) )  {/: - , -z , t  e/10 for all J J0}. ~- ----- f[o,j](~2n(~,y),(:r (O n' (~d,y))) < > 

If (W, y) satisfies 

(4) - * * f[o,j](On(W,y),~2 (w,y)) < ~/20 

for all J > Jo, and for a given t and all J > Jo 

(5) ] E o , j l ( ~ ( ~ , y ) ,  ~ * ( ~ , ~ ) )  < e /20 ,  

then dtn E L. This is because ~tn(w, y ) = a-d~n(~*'t(w,y)). Thus L is the set of 
d2,,t~W possible values of dtn consistent with O~(w,y) and n ( , Y )  given good coding. 

We will show that there exists a bound on the diameter of L which holds for 

most (w, y) and t. 

LEMMA 5.5: I f (w,  y) satisfies equation (4) for all Y > Jo and diam(L) >_ Yo for 

some t then ~*(~, y) E CJo. 

Proof'. Let (w, y) satisfy equation (4) and let ll, 12 C L such that J '  = 12 - ll > 

Jo. Then 

(6) f[o,g,] (~2*n (w, y), a -11 ( ~ , t  (w, y))) < e/X0 

and 

- -  ! , 

(7) J -11 ,,~ f[o,J,l(~ (%(~,y)),~ (% (~,y))) < 2~/lo. 

Equation (6) is true because 11 E L and by using J = J~. Equation (7) is true 

because 12 E L and by using J = 2 J  t. The triangle inequality implies that 

I , 

][o,j,](O*n(W,y),a y (On(w,y) ) )<  3e/lO. 
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Equation (4) with J = J '  and J = 2J '  and the triangle inequality imply that  

~o,~,l(~*(~,y), J (~*(~ ,y) ) )  < 6~/10. 

So qs*(w,y) E Cj  o. | 

We will use L to define a function F(w, y, t) --+ Z so that  F(w, y, t) = F(w, z, t) 

if Yi = zi for all i > 0 and F(w, y, t) approximates dry(w, y). To measure how 

well F approximates dtn(W, y) we define 

Ca,~,r,r = {(~,Y)l#{t �9 [0,r]: Ir(~,y,t) -d~(~,~)l < a} > (1 -~)(T + 1)}. 

If m(Ga,~,T,F) is near one then for most points (w, y) and most times t <_ T the 

quantities dr(w, y) and F(w, y, t) are less than a. 

LEMMA 5.6: For any e > 0 there exists a function F such that F(w,y , t )  = 

F ( w , z , t )  i f  yi = z~ for all i >_ 0 and 

lira inf m(Ga,~,T,F) = 1. 
a - + o c  T 

Proof  Jo will be specified later. We define F as follows. Given any t, w, and 

a~,i > 0, find y such that  

1. a i = y i f o r a l l i > 0 ,  
. - , fEo,jl(~n(~,y), ~*(~,y)) < ~/20 for all J > Jo, 

3. ][o,g](g~tn(W,y),O*(w,y)) < e/20 for all J _> Jo, and 

4. ~*(~, ~) ~t CJo. 
Then define F(w, y, t) to be any I �9 L. If (w, z) and t also satisfy conditions 1 

through 4 then by the previous two lemmas dtn(W, z) �9 L(w, y, t) and 

I F ( ~ , z , t )  - d~(~,z)l < J0. 

We need to show that  the measure of Gjo,~,T,F can be made arbitrarily close 

to 1. If (w, z) satisfies conditions 2 and 4 and 

#{t :  t �9 [0,T] and ~o,j](~tn(W,z),q~*(w,z)) < e/20 for all J > Jo} 
(8) 

> (1 - d ( T  + 1) 

then (w, z) �9 Gjo,e,T,F. Lemma 5.2 shows that  for large Jo the measure of the 

set of (w, z) that  does not satisfy condition 2 is less than 6. By Lemma 5.4 the 

measure of points that  do not satisfy equation (8) can also be made less than e 

for large J0. We also have that  , ,  (CJo) < e for large Jo. 

Thus for any sufficiently large Jo and any T we have m(GJo,e,T,F ) > 1 -- 3e. 

As e was arbitrary 

lim infm(Ga,~,T,F) = 1. | 
a --~ o o  T 
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LEMMA 5.7: I f  Lemma 5.1 is not true then for almost all (w, y) and (w, yr) 

lim inf )~-k kl (q)* (w, y), ~* (w, y')) = 0. 
k - - +  o o  L ~ J 

Proof: If Lemma 5.1 is not true then for any N, T, and sufficiently small e 

there exists q'~ so that  either 

(9) m({(a~,y): # { t  �9 [0,T] such that  d t < - N }  < 5e(T + 1)}) _< 1 - 5c, 

o r  

(10) m({(w,y):  # { t  e [O,T] such that d t  > N }  < be(T + l)}) <_ l -  be. 

Without loss of generality we will assume that  it is the former. If both are true 

then we could replace the lim infs with a limit. 

Fix e < 1/100. For the moment assume that  N, n, and ~ are fixed. We want 

a to be large enough so that  for all T sufficiently large 

(11) m(Ga,e,T,F) > 1 - e .  

This can be satisfied because of Lemma 5.6. Given y and y~ let z be chosen so 

that  zi = yi for all i _> 0 and zi = y~ for all i < 0. 

Let D be the set of three-tuples (w, y, y~) such that  there exists a t where 

1. F(w, y, t) = F(w, z, t) < - N ,  
2. < a, 

3. IF(~z ,z , t ) -d t~(w,z) l  < a, 

4. f[_k,o](J~tn(w,y),~*(w,y)) < e for all k _> a, and 

5. f[_k,o](J~tn(W,z),~*(w,z)) < e for all k _> a. 

By equations (9) and (11) and Lemma 5.4 it is possible to choose a, n, and On 

and arbitrarily large N so that  

rh(D) > O. 

Because Yi = zi for all i _> 0 

~. , t (~  Y)i ~ . , t (~  
n ~ ~ ~ n \ ~ Z )  i 

for all /_> 2n. Combined with the facts that  Idtn(W,y) - dtn(W,z)l < 2a, 

~tn(w,Y) a-d'n(~'Y)[ n ~ ,Y)) 

and 
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there exists a j, [j] < 2a, such that 

= 

for all i > dtn(w,y) + 2n. In conjunction with conditions 4 and 5 this implies 

that 

~-k,o](O*(w,y),~*(w,z))  < 2e + 2a/k 

for all k such that Jo < k < N - 2n. As e is arbitrary, and for a fixed e and a 

the choice of N is arbitrary we get that  

By Lemma 5.2 

lim ~ _  k o1( (I)* (w, y), (I)* (w, z)) = 0. 
k - - + o O  L , J 

Thus 

(12) 

ft- ,01 W), z)) = 0. 

l i m  f[-k,o] ((I)* (w, y), ~* (~, y')) = 0. 

The set of triples (w, y, yr) which satisfy equation (12) is shift invariant. It has 

positive (~)  measure because it contains D which has positive measure. Thus 

by the ergodic theorem it has (rh) measure 1. By choosing z so that  zi = yi for 

all i > k and zi = y~ for all i < k and repeating the previous analysis we can 

show that for most w, y, and yr 

(13)  f[-k,k](r (w,y) ,O*(w,y'))  < ~. 

As e and k were arbitrary this implies that  

liminf )~_a kl(~*(w,y) ,~*(w,y ' ))  = O. | 
k - - +  o o  L ~ J 

We will use the previous lemma in a slightly different form. 

LEMMA 5.8: If Lemma 5.1 is false then for any e > 0 there exists an n large 

enough so that there exists a Jo and a function M: ~ x Y --+ {red, blue} z so 

that 

1. for any N if  wi,j = w~,j for all but m pairs ( i , j )  such that Ill < n and 

[j[ < N then 

#{1 �9 [0, N]: M(w,y) l  ~ M(w',y')L} <_ m ( 2 n +  1) 

and 



Vol. 142, 2004 A FAMILY OF NONISOMORPHIC MARKOV RANDOM FIELDS 359 

2. m({(w,y): ~o,j](M(w,y),~*(w,y)) < e}) > 1 - e  for all J > Jo. 

Proof." Equation (13) shows the existence of n and a map MI: ~t • Y --+ 

{red, blue}[ -k,k] such that  M'(w, y) = M'(w', y') if (w, Y)i,j -: (w', Y')i,j for all 

lil, [j[ < n. M '  also has the property that  

m({(~, y): ~-k,k] (M'(w, y), r (w, y)) > ~/10}) < ~/lO. 

Concatenating M'  gives the desired M. | 

Given ~ > 0, N, and M from Lemma 5.8 we say a point (w, y) co d es  well  

for  M if 

1. ~o,g](M(T-n(w, y)), <~*(T-n(w, y))) < e and 

2. ~o,y](M(T~(w,y)),r < e for at least 3ep'N/4 of the 

i E (0, ep'N). 
Lemma 5.8 implies if N > Jo 

(14) m({(w,y): (w,y) codes well for M}) > 1 - 5E. 

Let Q be the partit ion of l~ • Y determined by wo,o. Let 

Q~,sv = {w': ~oi, j • 03~,j for all (i,j) such that  i < 0 or i < N and j < 0}. 

The set Q~,N and 4" induce a measure uw,g on {red, blue} z by 

.~,N(A) = (mlQw,~)({(W,y'): r e A}). 

We say a measure )t is e c o n t a i n e d  in an  e/[O,N] n e i g h b o r h o o d  if there exists 

a set S such that  A(S) > 1 - e and ~o,y](a,b) < e for each a,b C S. 

LEMMA 5.9: I f L e m m a  5.1 is not true then for any e > 0 there exists No such 
that for all N > No 

(15) #({w: U~,m is e contained in a n  s neighborhood}) > 1 - e. 

Proof." Assume Lemma 5.1 is not true. Then the conclusion of Lemma 5.8 is 

true with e replaced by e2/20. Let M, Jo = No and n be from Lemma 5.8. Let 

No > 4n/e. Thus by equation (14) for all N > Jo the set of points that  don't  

code well for M has measure at most e2/4 + No. For any w',w" E Qw,N 

M(T-n(w,,  yl)) = M(T-n(w,, ,  y,,)). 

Thus if J ,  w" E Qw,N and both (~', y') and (w", y") code well for M then 

condition 1 in the definition of codes well for M implies 

ZEo,NI (4* (T-~(~ ', d)), 4" (T-~(w '', y"))) < ~/10. 
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Because N > 4n/e 

- -  $ 

/[0,N](~ ( J ,  y'), ~*(T-~(~ ', ~'))) < ~/4 

and 

Thus 

f[o,N]((I ) (w ,y ) , r  (T-n(w",y")) )  < e/4. 

- , , ~ (~  , , 1 ) )  < ~ .  
f[o,~](~ (~ ,y ' ) ,  * " 

Thus if all but  an c fraction of the points in Q,J,N code well for M then l](w,y), N 

is e contained in an e J~O,N] neighborhood. By Fubini's theorem this proves the 

lemma. | 

Now we show that  if Lemma 5.1 is false then Lemma 5.8 and Theorem 2.2 

imply for most a; the measure V~,N is not r contained in an e )~0,N] neighborhood. 

Theorem 2.3 and the very weak Bernoulli condition for Z 2 actions give us the 

following lemma. 

LEMMA 5.10: As the factor generated by Q is isomorphic to a Bernoulli shift 

for every r > 0 and ~ > 0 and any arbitrarily large N and a set G of measure 

at least 1 - e so that for any point (w, y) C G 

(16) ~O[O,rg]x[O,X](m, (mIQ~.N)) < e. 

Proof: This is just a restatement of the very weak Bernoulli condition for the 

factor generated by Q [1]. II 

LEMMA 5.11: If  Lemma 5.1 is not true then for any e > 0 there exists an No 

such that for a11 N >_ No, there exists a set S such that m(S)  > 1 - e with the 

following property. For any (w, y) E S there exists a coupling c of u' and u~,N 

with 

(17) c({(~I ,Y2):]Eo,N1(Yl,Y2) < a } )  > .2. 

Proof: Choose No as follows. First use Lemma 5.8 to get M, J0 and n. By 

Theorem 2.2 the exclusion process is Bernoulli thus very weak Bernoulli. So 

we can choose No > J0 large enough so that  equation (16) is satisfied for all 

N >_ No/p', with e replaced with e2/(2n + 1) and r replaced with e. 

Fix N >_ No/pq Now we define S to be all (w, y) which code well for M. There 

exists a set of relative measure 1 - ~ in Q~,N of points which code well for M, 
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and ((0, y) E G from the definition of very weak Bernoulli. Thus m(S) > 1 - e. 

Fix ((0, y) E S. Since ((0, y) E G 

~[O,eN/p,]• (mIQ~,N)) < e2/(2n + 1). 

Thus the number of i 6 (0, ep~N) so that  

d[i-n,i+n]x[O,U/p'](m, (mIQ~,N)) < 3e2/(2n + 1) 

is at least eN/2p'. By the previous line and condition 2 of the definition of 

codes well for M there is at least one i so that  

~[i_n,i+n]• m, < 3ee/(2n + 1) (18) 

and 

(19) m]Q,~,n ({((~ Yl): f[o,N](M(Ti((01, yl)) ,  (I)* (Ti((01, yl)))  < ~}) > .25. 

Equation (18) and Lemma 5.8 imply that  there exists a coupling ~ of (m[Q~, N ) 

and m such that  for the given i 

(20) c({((01, yl)(W2, Y2): ~O,NI(M(Ti((01, yl)), M(Ti(w2, y2))) < 2e}) > 1 - 2e. 

Combining equations (19) and (20) we get that  

(21) c({((01,Yl)((02,Y2): ~o,Nl((~*(Ti((01,Y1)),M(Ti((02,Y2))) < 3e}).22. 

By condition 2 of Lemma 5.8 we have that  

m({(w2, Y2): ~O,N](M(Ti((02,y2)), O*(Ti(w2,y2))) < e})>  1 -  c. 

This also implies that  

C({((01, Yl)((02, Y2): )~0,N] ( (~* (Ti((01, Yl)), 4"  (Ti(w2, Y2))) < 4e}) > .2. 

Thus UT~(~),N can be coupled with u r so that  1/5 of the mass is on points within 

4e in /~0,N]- As i < eN we have that  there exists a coupling c of ur and u~,n 

with 

(22) C({(yl,Y2): ~O,N](Yl,Y2) < 5s > .2. II 

Proof of Lemma 5.1: Suppose Lemma 5.1 is not true. Then the conclusions of 

Lemmas 5.9 and 5.11 are true. Thus we can choose ~ and N such that  equations 

(15) and (17) are satisfied as well as the inequality 

(23) . '  • J ( { (x ,x ' ) :  ]EO,Nl(X,X') > 20 }) > 1 - 
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There exists y, y', z, z' E {red, blue} N such that  

(y,y')  E A = {(Yl,Y2): ~O,NI(Yl,Y2) < 5~}, 

(y ,z ) , (r  e {(x,x'):  o,Nl(x,x') > 20d 

and 

(z, z') E {w: U~,N is e contained in an s neighborhood}. 

As (y,y')  E A 

but 

and 

and 

J~0,N] (Y, Y') > 20e, 

J~0,N] (Y, Z) < 5~ 

- ! ! 

f[O,NI(Y ,Z ) < 5e 

J~0,N] (Z, Z t) < 5~. 

This is a contradiction. I 

It follows easily from Lemma 5.1 that  the average speed is an isomorphism 

invariant. 

COROLLARY 5.1: If  the colored exclusion process generated by (a, p, c) is iso- 
morphic to the colored exclusion process generated by (a',  p', c') then s (a, p, c) = 

s(a', p', c'). 

Proof' If s(c~, p, c) # s(a ' ,  p', c') then there can be no isomorphism �9 that  sat- 

isfies the conclusion of Lemma 5.1. Thus the two processes are not isomorphic. 

I 

6. r(a, p, c) is an  i s o m o r p h i s m  invar ian t  

We will use Lemma 5.1 to show that  r(a,p,c), the relative one dimensional 

entropy of the coloring, is an isomorphism invariant. Here is a sketch of the 

proof. First we find a finite code q'~ which is a very good approximation of 

q>. We want N to be much larger than n, the size of the finite code. Since <I>n 

approximates q, well, <I,;(~, y) determines ,I~*(w, y) up to a small error in f .  

We will show that  (I)*(w,y) depends mostly on y. The values ,,t 
0 < i < N, approximate the color of some particles in (I)* (w, y) up to a small 

error in f .  Because of Lemma 5.1, we can choose N large enough so that  a fixed 
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fraction of the time Idtnl < eN. This ensures that  for a fixed fraction of the time 

~*'t(w Y)i, 0 < i < N, is approximating ~*(w,y)i ,  0 < i < N (in ] ) .  The fact 
n \ 

that  ~*'t(w ~ ~ n ~ , Y] depends mostly on y will imply that  the relative entropy is an 

isomorphism invariant. 

Given e0,e and N we say a point (w,y) cod es  well  for  ~* if there is a set 

S = S(w, y) C Z of upper density at least 9e0 such that  

1. for all t E S, [dtnl < ep'N, 

2. for a l l t E S  

(24) f[o,r N] (~* (w, y), } t  (w, y)) < 2c, 

3. ][O,p,N](O*(w,y),O*(w,y)) < e, and 
4. 02 pN > (F(O(w,y)))  (1-~)p'N + 2n. 

Note that  conditions 1, 2 and 3 imply that  for all t E S 

/[0,p'g] (~n(w, Y), O*'t( w, Y)) < 4e. 

LEMMA 6.1: There exists eo > 0 such that for any e > 0 there exists N such 

that the measure of points that do code well for ~* is at /east  5eo. 

Proof: By Lemma 5.1 we can choose e0 so that  for all N sufficiently large and 

for all T 

m({(w,y):  #{t :  t E [0,T] where ]dt~(w,y)] < ep'N} <_ 10eo/(T + 1)} 
(25) 

< 1 - 10e0. 

Without loss of generality e < Co. By Lemma 5.2 we can choose ~,~ and Jo so 

the set of (w, y) such that  for all J > J0 

(26) - * * 

has measure > 1 - e. We also want Jo < ep'N, n < ep'N and for Lemma 5.4 to 

be satisfied. 

Condition one is satisfied for a set of measure at least 10e0 by equation (25). 

By Lemma 5.4 the measure of points that  satisfy the second condition is at 

least 1 - e. The third condition is satisfied by a set of measure at least 1 - e 

by equation (26). The strong law of large numbers for a Markov chain implies 

that  for large N the last condition is satisfied on a set of at least measure 1 - e. 

Thus if N is sufficiently large the measure of points that  do code well for ~n is 

at least 7co. 1 
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Given c, co and N define H: {red,blue} Np --+ {red,blue} Np' as follows. For 

each ai E {red, blue} Np choose a point (w, y) that codes well for O* so that 

a~ = Yi, 0 < i < Np,  and (w, y) satisfies the ergodic theorem for all cylinder sets 

in the free range process, if possible. Then define H(y) j  = On(w , y)j.  

LEMMA 6.2: For all e > 0 there exists an N large enough and G C f~ x Y ,  

re(G) > 2co, such that i f  (w', y') E G then 

f[o,p,N](O*(w', y'), H(y ' ) )  < 10e. 

Proof: Given (w',y ')  let (w,y) be the point used in the definition of 

H(y~o, . . .  ,Y~N), if it exists. We say (w',y') E G if 

1. (w, y) satisfies conditions 3 and 4 in the definition of codes well for �9 n and 

2. there exists a t E S(w, y) so that  

(27) W~,j ---- Wwo,t+i,t+j 

for all [Jl -< n and 0 < i < w pN. 

Given such an (w I, yl) we get t E S(w, y). Since (w, y) codes well for 0* and 

t E S  

(28)  - * f[o,p,g](O n (w,y), O~(w,y)) < 4e. 

Since (w I, yl) satisfies equation (27) and condition 4 of the definition of codes 

well for O*, and (w, y) codes well for O~ then 

�9 I ! * , t  % ( w  , y  = % 

for all i such that 2n < i < (1 - ~)p'N. Combined with equation (28) and the 

fact that H(y ' )  = O*(w, y) this implies 

j~0,p, N]/O*/WI Ix, L nL , y )  H(y ' ) )  < 6~. 

Because (w I, yl) satisfies condition 3 of coding well for O~ we have that 

y') ,  < 

Putting this together gives 

f[o,p,g](O*(wI,yI),g(y')) < 7e. | 
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LEMMA 6.3: If  the colored exclusion process generated by (~, p, c) is isomorphic 

to the one defined by (c~', p', c') then ph(c) = p'h(c'). 

Proof: Suppose p'h(c') - ph(c) = 6 > 0. Get e0 from Lemma 6.1. Then choose 

N and e so that  any set A such that  u'(A) > e0/2 cannot be covered by 

2(h (c ' )p ' -5 /2 )N  = 2(h(c)P+5/2) N 

neighborhoods of f[o,p'N] diameter 10e. We also want N and e so that  there 

exists a set B such that  u(B) > 1 - co/2 which can be covered by 2 (h(c)p+a/2)N 

cylinder sets of length pN. Finally we get G from Lemma 6.2. 

This is possible by the Shannon-McMillan-Breiman theorem and the fact 

that the u' measure of an lOef[o,p,N] neighborhood of almost any y' can be 

made less than 
2 - ( h ( c ' ) p ' - 5 / 2 )  N = 2-(h(c)P+a/2)  N 

if e is small enough and N is large enough. Thus there exists a subset S C BNG 

with u(S) > e0/2 which can be covered by 2 (h(c)p+a/2)N cylinder sets and to 

which Lemma 6.2 applies. By applying Lemma 6.2 there exists a set H(S) with 

u'(H(s)) > co/2 and H(S) is covered by 2(h(~>+a/2)N10ej~o,p, Nl neighborhoods. 

This is a contradiction. The other inequality comes from the same analysis 

applied to ~ - 1 .  II 

Proof of Theorem 3.1: The entropy of the colored exclusion process is an iso- 

morphism invariant. Corollary 5.1 implies that  the speed is also an isomorphism 

invariant. Lemma 6.3 says the relative entropy of the colored exclusion process 

is an isomorphism invariant. | 
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